
JOURNALOF COhfPUTATTONALPIiYSIcS2,236-254(1968) 

Numerical Solution of the Fokker-Planck Equations 
for a Hydrogen Plasma Formed by Neutral Injection1 

JOHN KILLEEN AND ARCHER H. FUTCH 

Lawrence Radiation Laboratory, University of California, 
Livermore, California 94551 

ABSTRACT 

We describe a program for the solution of the time-dependent Fokker-Planck 
equations for electron and ion distribution functions in velocity space. We consider the 
formation of a plasma in a magnetic mirror contiguration by the injection of energetic 
neutral atoms. In the equations we have a source of energetic protons and cold electrons, 
and we include losses due to scattering and charge exchange. The coupled nonlinear 
partial differential equations are solved by an implicit difference method which is 
described. Numerical results are presented for two cases of interest. 

In those experiments in controlled fusion research that employ the injection of 
energetic neutral atoms into a magnetic mirror configuration, a plasma is formed 
of initially hot ions and cold electrons. It is of interest to know the velocity distribu- 
tion functions of the electrons and ions as a function of time during the buildup of 
the plasma. The most suitable mathematical description is by means of the Fokker- 
Planck equations for the ion and electron distribution functions. This is because 
the dominant mechanism for energy transfer among the particles is by long range 
Coulomb interactions. The Fokker-Planck equations for the distribution functions 
of several species of particle, where the two-body force is an inverse-square law, 
have been derived in the paper of Rosenbluth, MacDonald, and Judd [I]. They 
use spherical polar coordinates in velocity space (u, 8, v), where 13 is the angle 
between the velocity vector and the magnetic field vector. They assume azimuthal 
symmetry so the resulting distribution functions are of the formf(u, B, t). Calcula- 
tions performed in this two-dimensional velocity space [2], [3] for the ion distribu- 

1 Work performed under the auspices of the U.S. Atomic Energy Commission. 
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tion function indicate that good results can be obtained by separating the distribu- 
tion function into a product of two terms. The first term is a function of v and t and 
the second term is a function of 8 only. The equation for the function of 0 is a 
Legendre differential equation on the domain --8, < 0 < & , where 8, defines 
the magnetic mirror loss cone. The equation forf(v, t) must be solved numerically, 
and it is given in Eq. (6) of this paper for each species. The boundary condition on 
the distribution function in such a loss cone problem is f(v, 8, , t) = 0 for all v 
and t for each species which implies f = 0 at v = 0 in the separated solution. In 
those problems where we assume that the distribution functions are isotropic we 
take a symmetry condition at v = 0, i.e., af /au = 0 for all t. 

Spatial dependence is not included in the model. In an earlier calculation [4], 
which included the finite orbit size of the ions and the spatial dependence of the 
trapping process it was found that the solutions for ion density exhibit growth 
rates similar to those obtained when the plasma density is assumed to be uniform. 

In the equations for ions and electrons we include source terms which are appro- 
priate for the neutral injection experiments such as ALICE [5] or PHOENIX [6]. We 
also include the loss of both species by scattering into the velocity space loss cone 
of the magnetic mirror configuration, and the hot ions can be lost by charge- 
exchange with the background gas. 

A plasma potential is computed at each time step of the calculation by requiring 
charge neutrality. A critical velocity v&t) is determined such that electrons with 
u < vcr are not lost and those with z, > vcr can be lost by scattering into the loss 
cone. At each time step the electron density is compared to the ion density and the 
velocity vcr modified accordingly. The plasma potential is obtained from 
eg, = *mu:, . 

We have coupled nonlinear partial differential equations for the functions 
f&v, t) and fi(v, t). We solve the equations numerically using finite difference 
methods. The equations are not linearized, i.e., the coefficients which involve 
moments of the distribution functions are computed at each time step. An implicit 
difference scheme is used, i.e., the velocity derivatives are replaced by difference 
quotients taken at the new time step while the coefficients are evaluated using the 
distribution function of the previous time step, and extrapolated. The scheme is 
stable numerically in practice with no restriction on the time step. This is an 
essential part of the calculations because as the electron temperature increases, the 
transfer rate decreases and the time step, d t, must be continually increased during 
the calculation in order to progress toward equilibrium in a sensible manner. 

In the last section we give numerical results for two cases of interest to the 
ALICE experiment [5], where we have used a source of 15-keV protons and lo-eV 
electrons and varied the beam current and background neutral density. In both of 
these cases an equilibrium density is reached; the electrons relax to a Maxwellian- 
type distribution. 
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THE FOKKER-PLANCK EQUATIONS FOR IONS AND ELECTRONS 

In the paper of Rosenbluth, MacDonald, and Judd the Fokker-Planck equation 
for an inverse-square force is derived [l]. In Eq. (31) of that paper the result is 
given in spherical polar coordinates in velocity space, assuming azimuthal sym- 
metry, i.e., no F dependence. We further assume that the distribution functions 
are isotropic in velocity space, i.e., there is no 19 dependence. The functions depend 
only on a, the magnitude of the velocity, and t, the time. Under this assumption 
the equation becomes 

The functionf,(u, t) is the distribution function for particles of type a. The functions 
h,(u, t) and g(v, t) are defined by the equations 

The summations are taken over all the species of particles being considered, 
including type a. The constant I’, is defined by the equation 

r, 3 (4rre4/ma2) 1nD. 

The quantity D is the ratio of the Debye length to the classical distance of closest 
approach. 

The number density of particles of type a is given by 

n,(t) = 47r j;fa(v, t) v2dv. (4) 

In Eq. (1) there are no source or loss terms, i.e., dn,/dt = 0. We can consider the 
loss of particles by Coulomb scattering. The loss rate for such a process has been 
given by Chandrasekhar [7], and can be written as 

dn,- 
dt - - (41~)~ j)a,v, t) 0’ [; jr ka(v, v’)fb(v’, t) v’2dv’] dv, (5) 
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where 

ka(v, v’> = P&J> ra (1 + $) $ 

and p,(v) is the probability that particles of type a and velocity v will be lost. We 
shall discuss the form of p,(v) that we use later. We can also add a source term, 
s,(v, t), to Eq. (1). The details of this term will be given in the next section. 

If we use Eqs. (2) and (3) to evaluate the coefficients of Eq. (I), and also include 
the source and loss terms discussed above, then the equation forfa(v, t) becomes 

(4nra)-1 at = av2 - /F [& j:,,v’, t) d4 dv’ + f jmfW t) 0’ dv’] 1 
21 

+ g ; C [2 ; j: j&i, t) v’~ dv’ - & j; fb(v’, t) v14 dv’ 
b 

-faE%y F [(I + f$) j:hbA 6 vf2 dv' 

’ -- 
3v2 

j: &(I/, t) 21’~ dv’ + $ j’%,(zf, t) v’ dv’] j + s,(v, 0. (6) 

The term for charge-exchange loss must be added to the above equation for ions. 
The term s,(v, t) represents the source of injected particles. 

We consider electrons and ions of 2 = 1. We introduce the dimensionless 
variable x = v/v, , where v0 is a constant and is a characteristic velocity. Let 
f = (47rvo3/Ke) fe , where Ke is determined from the equation 

~(0) = Ke jr f (x, 0) x2 dx; 

i.e., the constant is determined by the initial conditions with n,(O) equal to the 
initial electron density. Similarly, we let g = (4q,3/K~) fi , where 

m(0) = Ki j; g(x, 0) x2 dx. 
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We introduce the dimensionless variable 7 where r = (~~&/vo3) t. Let p = m,/mi 
and K = Ki/Ke . We define functionals 

Nf) = ok.% 4 Y2 45 (8) 
0 

and 

E(f) = pY> 4v”@. (9) 

In terms of these new variables, the equation for the electron distribution function 
becomes 

a? ?f af -==@++B+cf+R a7 (10) 

where 

a.4 = ; ] [$ E(f) + Wfl] + K [$ E(g) + M(g)] j , 

B = & ] [& W-) - & E(f) + MS)] + K [p & N(g) - & E(g) + M(g)] I, 

c = 2(f+ Kpg) - p,(x) & 2 [& Nf) - & W-) + Wf)] 
I 

+ KU + t”)[& Nd - & E(g) + M(g)] ) . 

The term D(x, 7) describes the time-dependent source of electrons. 
The equation for the ion distribution function becomes 

ag a28 ag -=FF+GG++g+L, a7 
where 

F = ; pL2 
I 
[$ E(f) + M(f)] + K [+- E(g) + M(g)] 1, 

G = $ P’ 
I 
[; & W-1 - & E(f) + M(f)] 

+ K [& Nd - & 

(11) 
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- & W-) + M(S)] + K [& Wd - & E(g) + M(g)]\ n 

The term H,(x, 7) contains the charge-exchange-loss term, and L(x, T) describes 
the time-dependent source of ions. 

At any time step we can determine the number density and average energy of 
each type of particle. Let I,-(T) and I,-(T) be the second and fourth moments of the 
electron distribution function, i.e., 

z,-(T) = UJ f (X, T) X2 dx (12) 
0 

z4-(7) = 
s 

=)(X, T) ti dx. (13) 
0 

The number density of electrons is given by 

and the mean electron energy is given by 

1 -(T> Ee(7) = i kT, = i mevoa L--- 
I,-(T) ’ 

let 

z,+(T) = 1; g(X, T) X2 dx, 

z*+(T) = /; g(X, T)  X4 dx. 

The number density of ions is given by 

ni(T) = &Z,+(T) 

and the mean ion energy is given by 

3 1 
J%(T) = 2 kT1 = 3 w. a la+(T) 

zz+(T) . 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 
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SOURCE AND Loss TERMS 

In this section we shall describe the form of the source and loss terms that appear 
in Eqs. (10) and (11). The mechanisms for trapping the neutral-atom beam are the 
Lorentz ionization of excited hydrogen atoms and ionization of the neutral beam 
atoms by collisions with background gas molecules and with previously trapped 
ions and electrons. The growth rates of electrons and ions are given by the equa- 
tions [4] 

dne If * -= -3-q [$q%j 
dt V 

+ q’vn,] + n, [$ (Fj + uie?mo] (20) 

dni If * -= - + ni [+ (+j] + yle i+ (+j] 
dt V (21) 

where I is the injected neutral beam current, V is the plasma volume, f * is the 
fraction of the neutral beam ionized by the Lorentz force, L is the path length of 
the neutral beam through the plasma, or is the relative velocity between interacting 
particles, and o0 is the characteristic velocity defined earlier which is determined by 
the beam velocity. The cross sections for ionization of the beam atoms by collisions 
with hot ions and electrons are Crti and CJ~ e, Cross sections for ionization of the 
background gas by hot ions and electrons are uii and Die, and n, is the background 
gas density. In a magnetic mirror field, the cold ions (produced by charge-exchange 
collisions and by ionization of the background gas) may be neglected since they 
are rapidly scattered into the mirror escape cone and lost from the system, hence 
these terms are omitted from the above ion equation. 

We assume that the injected electrons and ions have a velocity distribution 
defined by Se(X) and S(x). Froms Eqs. (12) and (14) we have 

dne - = Ke s m Ef 
dr o a7 

x2 dx 

and from Eqs. (16) and (18) we have 

dni -= 
dr 

K, 
s 
co !k 9 dx 
oa7 * 

Using Eqs. (20) and (21) we can write 
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where 

and 

N(Se) = Jr Se(x) x2 dx 

N(Z) = jr S(x) x2 dx. 

Hence in Eq. (10) we have 

and in Eq. (11) we have 

(22) 

In the calculations we keep ne(T) = a(T) by adjusting the plasma potential, SO we 
can write Eqs. (22) and (23) as 

@XT 7) = se(X)& + bi(T)l, (24) 
L(X, 7) = si(X)[p, + Wi(‘dl, (25) 

where 

- - 
p1 = $ -!- + ( 1 KiN(Si> [ ( 

and ?Zf(T) is given by Eq. (18). 
We can include up to ten sources of the type given by Eq. (25), corresponding to 

multiple ion beam injection at different energies. In the above discussion of source 
terms the (UV) terms were treated as constants; however, the cross sections have 
a velocity dependence determined by experimental measurements. We have 
polynomial descriptions for these functions so the terms UWZ(T) can be replaced by 
integrals involving the distribution functions. This is illustrated in the next para- 
graph on charge exchange loss. 

In Eq. (11) the charge-exchange loss term is ----H,(x) g(x, T), where 

f&(x) = (t/T) Wuc&) = (t/T> %~,=‘c,(x)~ (26) 
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and u&v) is the charge-exchange cross section. We have fit the experimental cross 
section, u,, , with a fifth-degree polynomial, so we write 

H,(x) = aL + HblX + &x2 + &1x3 + f&,x4 + &x51 (27) 

where the coefficients are constants, including the constant factor, (t/7) lzOv,-, , which 
is an input parameter of the problem. 

We shall now give the terms p&) and pi(x), which appear in Eqs. (10) and (1 l), 
and are the probabilities that electrons and ions of velocity vOx are scattered into 
the loss cone of the magnetic mirror machine. In the case of no plasma potential 
these terms are equal and are given by Simon [8]. With a potential we follow the 
derivation by Kaufman [9] of the critical pitch angles in velocity space for the loss 
of ions and electrons. We denote the value of the magnetic field in the midplane by 
B,, , and the value at the mirror by Brna . We consider a plasma potential which has 
value v in the midplane and goes to zero at the mirror. Let W be the kinetic 
energy of a particle, then the total energy H = W f ep, is a constant of the 
charged particle motion. We also assume that the magnetic moment X = W,/B is 
a constant of the motion, where W, = @nv,” and v1 is the component of velocity 
perpendicular to the magnetic field. The pitch angle in the midplane, 01, is defined 
by 

W&t 4,) A& sin2 OL = w(at BO) = BCl W,(at &A 
W(at B,,) = W(at B,) Bm,, ’ 

We define the critical pitch angle by the condition that v ,, = 0 at Bm, , and since 
tp = 0 at Bm, we have 

W,(at B,,) = H = Wfat &) & ev. 

The critical pitch angle is then given by 

*2 f 
sm Dlcr = 

BO - If B mlLx ( W(:Bo) * 1 

Electrons with energy ) W I -C 1 ea, ) are not lost and electrons with I W I > 1 ev 1 
are lost with probability pe = 1 - cos aCI. Let the mirror ratio be given by 
R = Bmax/Bo , then we have 

/  I  
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The above expression is also used in the steady-state treatment of Fowler and 
Rankin [lo]. 

The plasma potential is given by 

eq3 = &met.& . (30) 

The procedure for determining vcr is the following: At every time step G(T) and a(~) 
are computed from Eqs. (14) and (18), and the difference, ni(~) - Q(T) is also 
computed. During the buildup of plasma, electrons tend to be lost faster than ions. 
Since we wish to keep ne(T) = m(T), the above difference is compared to a pre- 
assigned small number. If the difference exceeds this number, then ucr is increased 
by an amount dvcr in order to decrease the electron loss rate and the time step is 
repeated. This process is repeated until m(T) - ne(7) is sufficiently small, and the 
calculation continues. As the plasma builds up and the electron energy increases 
the plasma potential also increases. 

The term p,(x) is then 

1 - [l - f (1 - Ag? X 2 Xcr 
P&l = 

0 X < Xcr 

where coxcr = Vcr . The term pi(x) which appears in Eq. (11) is then 

Pi(X) = 1 - [l - f (1 ++*)]1’2 
$0 

(31) 

(32) 

If the above square root becomes imaginary then pi(x) = a given constant. 

THE DIFFERENCE EQUATIONS AND METHOD OF SOLUTION 

We wish to solve the two nonlinear differential equations (10) and (11) on the 
domain 0 < x < co, 7 3 0, with the boundary conditions f ---f 0, g -+ 0 as x -+ co, 
and a f /ax = ag/ax = 0 at x = 0 for 7 > 0, or in the separated solution case we 
have f = g = 0 at x = 0. The initial distributions f (x, 0) and g(x, 0) are given. 

For the numerical solution we choose a domain 0 < x < xJ, where xJ iS 

specified for each problem and is taken large enough to include the high-velocity 
tail of the electron distribution. As the electrons increase in temperature, the 
distribution spreads out; thus the choice of xJ determines when the calculation 
must be stopped in order to preserve accuracy. At x = xJ , we take the boundary 
condition f = g = 0. 
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In the domain 0 < x < xJ, T 3 0, consider the finite-difference mesh defined 
by xj = jdx, j = 0, 1, 2 ,..., J; 7% = nd7, n = 0, 1, 2 ,.... Let hn = f(xi , F) and 
gj” = g(xj , 7”); Ajn = A(J;:“, gj”, ~3 , T”), Bjn = B(fj”, gj”, xi , T”), etc. We define 
the first and second difference approximations by 

(*f) ,7l = Kl - Kl 
3 2Ax ’ 

(S”f>.a = if:1 - ?tY +“A:1 
3 (Ax)2 - 

We approximate Eqs. (10) and (11) by the following implicit difference equations 

h n+1 -fi” = 

AT 
p[A;+1(62f);+1 + B,““(Sj-)i”” + C;+f;” + Dj”“] 

and 

+ (1 - p)[Aj”(S2f)j” + Bj”(Sf)F + Cj”h” + Dj”] 

gjn+1 - gin _ - 
AT 

p[F;+1(62g);+1 + G;+l(Sg);+’ + H;+lg;+’ + Ljn+‘] 

+ (1 - p)[Fj”(S2g)j” + Gj”(Sg)jn + Hj”gj” + L,1z] 

where + < p < 1. We wish to solve these equations for the unknowns f y+l and 
g;+l; j = 0, 1, 2 ,..., J. 

We write the above difference equations as a set of simultaneous algebraic 
equations: 

ai"+f;",: - (1 + pi"")jy" + $+y-y = h", (33) 

4;+1g;$f - (1 + 7;“) g;+1 + e;+1g,“_:1 = qjn, (34) 

for j = 1, 2,..., J - 1. The coefficients are defined by 
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Fjn = - L$ cjng;+l - (1 - ?fl ) %” &” - 

- pAdzjn+l - (1 - p) A7Ljn. 

In the above coefficients we have 

2 A? = 3 I[+ m.m + Wf”)] + K [+ Edg”) + Mj(gn)]l ) 
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In the above expressions the moments of the distribution functions are given by 
the following: 

In Eqs. (33) and (34) we have the unknownsSq+l, gy+l, .j = l,..., J - 1 on the 
left-hand side of the equation, and the known quantities on the right-hand side. We 
are interested in solving these equations for the interior points, j = I,..., J - 1, 
since the boundary conditions at x = 0 and x = xJ determine the solutions for 
j = 0 and j = J. Consequently, we do not have to worry about singularities at 
x = 0 in the coefficients. The system given by Eqs. (33) and (34) is non-linear in 
the unknowns f ;+I, g;+l. If we extrapolate the coefficients, CL:+~, fiT+l, etc., from 
their values at the previous times T”, ?-I, then Eqs. (33) and (34) become a linear 
algebraic system in the unknowns f ;+I, gy+l. The procedure is to extrapolate the 
coefficients and solve the linear system, then compute the coefficients c$+l, &“l, etc., 
with the new values off;+l, g;+l. This procedure works very well since the coefi- 
cients change in a very smooth manner with time. 

We shall now give the method of solving the linearized equations. In Eq. (33) let 

where e, d are to be determined. Then Eq. (33) becomes 
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From Eq. (35) we can define 

In Eq. (34) let 

then 

,jn+1 = ,n+1 
1 + ,;+l’_ yj n+1p+l 

5-1 

j = l,..., J - 1. 

a;+1 = 
5;” 

1 + rlj n+l _ (jn+lan+l' 
j 5-l 

bjn+' = 
#;+lb,“_:l - p15” 

1 + 7$+1 - B;+la;$ ’ 

(36) 

(37) 

(38) 

j = 1, 2 )..., J - 1. 

From the boundary conditions at x = 0 we take f ;" = f :+l, gt+' = g;+l, so 
we have ei” = 1, dl;+l = 0, c$-J+~ = 1, b;f+l = 0 for all n. The computational 
procedure is to calculate e;+‘, dy+l, a:+‘, by+l, j = l,..., .7 - 1, from the recursion 
formulas (36) and (38); set f ‘J+’ = 0, gyfl = 0, and then calculate f y+l, g;+l, 
j = 0, 1,2 ,..., J - 1 from Eqs. (35) and (37). 

At each time step we compute the number density and average energy of the 
electrons and ions as given by Eqs. (14), (15), (18), and (19). The values of the 
integrals required are obtained from the functionals defined earlier, i.e., for j = J, 
we have 

b-(+) = N,(f9, 4-(Tn) = Juf"), 
&+(Tn) = NJk"), I*+(+) = zqg"). 

If Eqs. (10) and (11) are solved without source and loss terms, for an arbitrary 
initial distribution function the above integrals should all be constant and provide 
computational checks for the program. We find that the best results are obtained 
when the parameter p that appears in the difference equations is set equal to 1. 

NUMERICAL RESULTS 

A program of this type is used for a wide variety of parameter studies, In this 
section we show two cases of interest to illustrate the printed and plotted output. 
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We have investigated the formation of both hydrogen and deuterium plasmas. In 
the two cases to be shown we have a steady source of 15-keV protons and lo-eV 
electrons. In the first case the neutral beam current is 50 mA (3.1 x 101’ atoms/set) 
and the background gas density is 5 x IO7 molecules/cm3, and in the second case 
the beam current 100 mA and the background gas density is 10’ molecules/cm3. 

The velocity distribution of the ion source is Si(x) = e-1oo(2-1)2, and for the 
electron source we take Se(x) = e-l”@-l)*. We note that x = 1 corresponds to 
v = Do ) and we have v. = 1.679 x lo* cmjsec. From Eqs. (15) and (19) the above 
distributions yield average energies of 15 keV for protons and 10 eV for electrons. 

At 7 = 0 we have ne(0) = ni(O) = lo5 particles/cm3. We take g(x, 0) = Si(x) 
and for the initial electron distribution we use f(x, 0) = 1.753e-1.2*2 which also 
corresponds to lo-eV electrons. We have Ke = 1.69 x IO5 and r, = 1.5 x 10lg, 
hence (t/7) = (2v03/Kere) = 3.7. 

In the source terms given by Eqs. (24) and (25) we can tabulate some of the 
parameters for the two cases. 

I 

f* 
V 

L 

If* V 

IL 
V 

n0 

vo 

Case 1 Case 2 
3.1 x 1017 atoms/set 6.2 x 10” atoms/set 
1.5 x 10-3 1.5 x IO-3 

7.5 x lo3 cm3 7.5 x lo3 cm3 
24.0 cm 24.0 cm 

6.25 x lOlo 12.5 x lOlo 

1015 2 x 10’5 

5 x 10’ molecules/cm3 10’ molecules/cm3 
1.679 x IO3 cm/set 1.679 x lo* cm/set 

In the terms for p,(x) and pi(x) given by Eqs. (3 1) and (32) we have used a mirror 
ratio, R = 2.0. The velocity domain for case 1 is 0 < x < 12.5 with dx = 0.025, 
and for case 2 we use 0 < x < 24.0 with Ax = 0.05. 

In Fig. 1 we show the ion density as a function of time for the two 
cases. In the first case the charge exchange loss is considerable and the 
buildup is to 4.2 x log ions/cm3. The final density is determined by the scattering 
loss term; the first case was also run with a constant pi , i.e., 

pi = 1 - (1 - l/R)‘/” 

instead of Eq. (32), and the plasma density reached 1010 ions/cm3. The inclusion 
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of the plasma potential in the expression for the ion loss cone has a substantial 
effect on the buildup. In the second case with a smaller background gas density 
the equilibrium plasma density is considerably enhanced. 

FIG. 1. Ion density as a function of time for cases 1 and 2. 

FIG. 2 (left). Mean electron energy and plasma potential as a function of ion density for 
case 1. 

FIG. 3 (right). Mean electron energy and plasma potential as a function of ion density for 
case 2. 
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Fh. 4. Electron distribution functions as a function of x for various times for case 2. 
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6.0~10~ 

9 

4.0x105 

FIG. 5. Ion distribution functions as a function of x for various time-s for case 2. 
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In Figs. 2 and 3 we show the average electron energy and plasma potential in 
electron volts plotted as a function of ion density for the two cases. In the higher 
density case we see that the plasma potential required to achieve charge neutrality 
is considerably higher than the mean electron energy. 

In Figs. 4 and 5 we show a sequence of plots off(x) and g(x) at various times 
during the buildup of case 2. The plots for case 1 are similar, but in that case the 
ion distribution function g(x, T) retains the shape of the source function with an 
amplitude proportional to the ion density. The electron distribution function starts 
out as a Maxwellian, but immediately take the shape of the source function, Se(x); 
it then later relaxes to a Maxwellian. The ion distribution function changes shape 
much more slowly, but we see that it assumes a similar distribution. 

The curves of Figs. 4 and 5 are produced by the cathode-ray tube plotting 
routine of the program. In this case the ordinate scales offand g are automatically 
changed. We can also fix the scales and make a movie showing the time develop- 
ment of the distribution functions. 

We wish to thank Mrs. Shirley Rompel of the Lawrence Radiation Laboratory Computation 
Division for valuable assistance in the programming of this problem. We also wish to thank 
Robert Wagoner and Don Anhorn for their help with an earlier version of this problem. 
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